

= 1 and is negative for $a > 1$. This is because the potential does not vanish at infinity.

Suppose that a constant is added to the logarithm as follows:

$$\begin{aligned} G(s | s') &= \frac{1}{2\pi} \ln |s - s'| + C = -\frac{1}{2\pi} \ln |s - s'| + \frac{1}{2\pi} \ln k \\ &= -\frac{1}{2\pi} \ln \left\{ \frac{|s - s'|}{k} \right\}. \end{aligned}$$

Then if $|s - s'| < k$

$$G(s | s') \geq M > 0$$

and

$$\int_S \int_S \sigma(s) \sigma(s') G(s | s') ds' ds \geq M \left\{ \int_S \sigma(s) ds \right\}^2 \geq 0$$

and $\langle K\sigma, \sigma \rangle$ is strictly positive. It is sufficient that k be greater than the distance between any two points on S .

The other error involves (32) on page 241. The limit actually involves R , the radius of curvature of S at s' . For the two-dimensional problem

$$\lim_{s \rightarrow s'} \frac{\partial G(s | s')}{\partial n} \propto 1/R.$$

If S is a straight line at s' , $R \rightarrow \infty$, and the limit vanishes. This is

the situation intended at (32) and is correct for the pulse functions used in the examples.

Correction to "Surface Electromagnetic Modes of a Ferrite Slab"

THOMAS J. GERSON AND JOSEPH S. NADAN

In the above paper,¹ (23) is incorrectly referenced. The correct reference should be [4]. A second error appears on page 760 in the second sentence of the paragraph beginning immediately above Fig. 2. In this sentence the words "dynamic" and "magnetostatic" should be interchanged. The authors wish to thank J. Sethares of the Air Force Cambridge Research Laboratories for bringing the latter error to their attention.

Manuscript received August 29, 1974.

T. J. Gerson is with the Department of Electrical Technology, Queensborough Community College, The City University of New York, Bayside, N. Y. 11364.

J. S. Nadan is with the Department of Electrical Engineering, The City College, City University of New York, N. Y. 10031.

¹T. J. Gerson and J. S. Nadan, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 757-763, Aug. 1974.